Greedy bases in rank 2 quantum cluster algebras.

نویسندگان

  • Kyungyong Lee
  • Li Li
  • Dylan Rupel
  • Andrei Zelevinsky
چکیده

We identify a quantum lift of the greedy basis for rank 2 coefficient-free cluster algebras. Our main result is that our construction does not depend on the choice of initial cluster, that it builds all cluster monomials, and that it produces bar-invariant elements. We also present several conjectures related to this quantum greedy basis and the triangular basis of Berenstein and Zelevinsky.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative properties of a quantumCaldero- Chapoton map associated to valued quivers

We prove a multiplication theorem of a quantum Caldero-Chapoton map associated to valued quivers which extends the results in [8][6]. As an application, when Q is a valued quiver of finite type or rank 2, we obtain that the algebra A H |k|(Q) generated by all cluster characters (see Definition 1) is exactly the quantum cluster algebra E H |k|(Q) and various bases of the quantum cluster algebras...

متن کامل

Graded Quantum Cluster Algebras of Infinite Rank as Colimits

We provide a graded and quantum version of the category of rooted cluster algebras introduced by Assem, Dupont and Schiffler and show that every graded quantum cluster algebra of infinite rank can be written as a colimit of graded quantum cluster algebras of finite rank. As an application, for each k we construct a graded quantum infinite Grassmannian admitting a cluster algebra structure, exte...

متن کامل

A Quantum Analogue of Generic Bases for Affine Cluster Algebras

We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types. Under the specialization of q and coefficients to 1, these bases are generic bases of finite and affine cluster algebras.

متن کامل

The Multiplication Theorem and Bases in Finite and Affine Quantum Cluster Algebras

We prove a multiplication theorem for quantum cluster algebras of acyclic quivers. The theorem generalizes the multiplication formula for quantum cluster variables in [19]. Moreover some ZP-bases in quantum cluster algebras of finite and affine types are constructed. Under the specialization q and coefficients to 1, these bases are the integral bases of cluster algebra of finite and affine type...

متن کامل

Positivity and Canonical Bases in Rank 2 Cluster Algebras of Finite and Affine Types

The main motivation for the study of cluster algebras initiated in [4, 6, 1] was to design an algebraic framework for understanding total positivity and canonical bases in semisimple algebraic groups. In this paper, we introduce and explicitly construct the canonical basis for a special family of cluster algebras of rank 2. ju-bi-lee 1 : a year of emancipation and restoration provided by ancien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 27  شماره 

صفحات  -

تاریخ انتشار 2014